Tuesday, 9 October 2018

Medicinal Chemistry 2019

About Conference


Chemistry Conferences welcome chemical professionals, researchers, professors, scientific communities, delegates, students, business professionals and executives from all over the world to attend the “14th World Congress on Medicinal Chemistry and Drug Design” which is to be held during June 10-11, 2019 at Edinburgh, Scotland which includes prompt Keynote presentations, Oral talks, Poster presentations and Exhibitions.
Medicinal Chemistry 2019 which is the primordial chemistry conferences serves as a global platform to discuss and learn about Medicinal Chemistry, Pharmaceutical Sciences, Drug Design and Drug Development, CADD (Computer Aided Drug Design), Bioorganic and Medicinal Chemistry, Pharmacology and toxicology, Anticancer agents in Medicinal Chemistry, Analytical Chemistry, Pharmaceutical Industry, Organic Chemistry, Clinical Pharmacology, Evolution of Organic and Medicinal Chemistry in Pharma, Organic and Medicinal Chemistry Technologies for Drug Discovery, QSAR (Quantitative Structure-Activity Relationship) Fragment-Based Drug Design, Applications of Organic and Medicinal Chemistry in Drug Discovery, Market Dynamics, Conclusions and Future Trends, Medicinal Plants

In the light of this theme, the conference series aims to provide a forum for international researchers from various areas of chemistry, pharmacy, Medicinal Chemistry and Drug Design by providing a platform for critical analysis of new designing, and to share latest cutting-edge research findings and results about all aspects of Medicinal Chemistry. The current meeting of chemistry conferences will be a multinational gathering and present major areas such as Medicinal Chemistry, Pharmaceutical Sciences, Drug Design and Drug Development, Organic Chemistry and overall applications.

Conference Highlights

Medicinal Chemistry for Drug Discovery: Significance of Recent Trends reviews the state of the art and aims to determine the significance of technology and market trends in medicinal chemistry for advancing productivity in drug discovery. Although the fundamental task of medicinal chemists has not changed drastically over time, the chemical and computational tools and perspectives at their disposal have advanced significantly. One in particular, fragment-based drug design, stands out as promising major improvements in research productivity. We examine medicinal chemistry-related approaches and methodologies that drug discovery organizations employ in an effort to increase productivity in early drug discovery and decrease attrition at later pipeline stages. Key topics considered include structure-based drug design, fragment-based drug design, natural products-based drug design, diversity-oriented synthesis, and chemogenomics. An overall assessment of the current and potential value of these approaches is presented. Various flavors of computer-aided drug design are also considered, as the complexity and limitations of drug discovery programs that are based on biochemical screens of large compound collections have been major factors in stimulating the growth of this modality.
Anti-Infective Agents in Medicinal Chemistry aims to cover all the latest and outstanding developments in medicinal chemistry and rational drug design for the discovery of new anti-infective agents. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of current topics in anti-infective medicinal chemistry. Anti-Infective Agents in Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments in anti-infective drug discovery.
Formerly Current Anti-Cancer Agents in Medicinal Chemistry aims to cover all the latest and outstanding developments in medicinal chemistry and rational drug design for the discovery of new anti-cancer agents. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of current topics in cancer medicinal chemistry. Anti-Cancer Agents in Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments in cancer drug discovery.
Applied Medicinal Chemistry in its most common practice focusing on small organic molecules. Applied Medicinal Chemistry encompasses synthetic organic chemistry and aspects of natural products and computational chemistry in close combination with chemical biology, enzymology and structural biology, together aiming at the discovery and development of new therapeutic agents
Bioorganic & Medicinal Chemistry is a scientific journal focusing on the results of research on the molecular structure of biological organisms and the interaction of biological targets with chemical agents.
Medical biochemistry is a field that studies different types of molecules in hopes of bettering technology and medicine. In order to work in the medical biochemistry environment, students typically need to get an advanced degree, such as a master's and doctorate.
Medicinal Chemistry Research is a journal for the prompt disclosure of novel experimental achievements in the many facets of drug design, drug discovery, and the elucidation of mechanisms of action of biologically active compounds.
Medicinal chemistry and pharmaceutical chemistry are disciplines at the intersection of chemistry, especially synthetic organic chemistry, and pharmacology and various other biological specialties, where they are involved with design, chemical synthesis and development for market of pharmaceutical agents, or bio-active molecules (drugs).Compounds used as medicines are most often organic compounds, which are often divided into the broad classes of small organic molecules (e.g., atorvastatin, fluticasone, clopidogrel) and "biologics" (infliximab, erythropoietin, insulin glargine), the latter of which are most often medicinal preparations of proteins (natural and recombinant antibodies, hormones, etc.). Inorganic and organometallic compounds are also useful as drugs (e.g., lithium and platinum-based agents such as lithium carbonate and cis-platin as well as gallium).In particular, medicinal chemistry in its most common practice—focusing on small organic molecules—encompasses synthetic organic chemistry and aspects of natural products and computational chemistry in close combination with chemical biology, enzymology and structural biology, together aiming at the discovery and development of new therapeutic agents. Practically speaking, it involves chemical aspects of identification, and then systematic, thorough synthetic alteration of new chemical entities to make them suitable for therapeutic use. It includes synthetic and computational aspects of the study of existing drugs and agents in development in relation to their bioactivities (biological activities and properties), i.e., understanding their structure-activity relationships (SAR). Pharmaceutical chemistry is focused on quality aspects of medicines and aims to assure fitness for purpose of medicinal products.
This paper provides a mini-review of some recent approaches for the treatment of brain pathologies examining both medicinal chemistry and pharmaceutical technology contributions. Medicinal chemistry-based strategies are essentially aimed at the chemical modification of low molecular weight drugs in order to increase their lipophilicity or the design of appropriate prodrugs, although this review will focus primarily on the use of prodrugs and not analog development. Recently, interest has been focused on the design and evaluation of prodrugs that are capable of exploiting one or more of the various endogenous transport systems at the level of the blood brain barrier (BBB). The technological strategies are essentially non-invasive methods of drug delivery to malignancies of the central nervous system (CNS) and are based on the use of nanosystems (colloidal carriers) such as liposomes, polymeric nanoparticles, solid lipid nanoparticles, polymeric micelles and dendrimers. The biodistribution of these nanocarriers can be manipulated by modifying their surface physico-chemical properties or by coating them with surfactants and polyethylene-glycols (PEGs). Liposomes, surfactant coated polymeric nanoparticles, and solid lipid nanoparticles are promising systems for delivery of drugs to tumors of the CNS. This mini-review discusses issues concerning the scope and limitations of both the medicinal chemistry and technological approaches. Based on the current findings, it can be concluded that crossing of the BBB and drug delivery to CNS is extremely complex and requires a multidisciplinary approach such as a close collaboration and common efforts among researchers of several scientific areas, particularly medicinal chemists, biologists and pharmaceutical technologists.
Medicinal Chemistry — Understanding Drug Metabolism. These metabolic transformations are sometimes referred to as biotransformations. The body generally identifies drugs as foreign substances. Enzymes such as the Cytochrome P450 superfamily are heavily involved in the metabolism of foreign (xenobiotic) substances
Infectious disease and antimicrobial agent use imply deep knowledge and expertise in this field by medical team and clinical pharmaceutical care principle can complete the clinician’s works in more rational way preserving the activity of some critical drugs from MDR diffusion. We think that using the methods of the researcher in 1800-1900 in their laboratory without a lot of burocratic rules we can obtain more relevant pharmacological molecules to introduce in therapy today. We can think also that a more rapid process in improving some chemical characteristics of some drugs is today requested and this can be reached also by single research level. This work must be favored by registrative institution in an acceptable toxicity risk level in order to have more chances in drug discovering and re-designing.
Medicinal chemistry and pharmaceutical chemistry are disciplines at the intersection of chemistry, especially synthetic organic chemistry, and pharmacology and various other biological specialties, where they are involved with design, chemical synthesis and development for market of pharmaceutical agents, or bio-active molecules (drugs).
ADME is an abbreviation in pharmacokinetics and pharmacology for "absorption, distribution, metabolism, and excretion", and describes the disposition of a pharmaceutical compound within an organism. The four criteria all influence the drug levels and kinetics of drug exposure to the tissues and hence influence the performance and pharmacological activity of the compound as a drug. Sometimes, liberation and/or toxicity are also considered, yielding LADME, ADMET, or LADMET.
Organic compounds are important because all living organisms (redundant) contain carbon. The carbon energy cycle of carbohydrates in organisms but also in fossils fuels becoming petroleum and natural gas. Organic compounds are important because all living organisms (redundant) contain carbon. The three basic macromolecules of life are Carbohydrates (CH2O), Fats (lipids) (CHO) and Proteins (CHON).
Drug design, often referred to as rational drug design or simply rational design, is the inventive process of finding new medications based on the knowledge of a biological target. Drug design frequently but not necessarily relies on computer modeling techniques. This type of modeling is sometimes referred to as computer-aided drug design.
Track 16: Chemical Biology
Chemical biology is a scientific discipline spanning the fields of chemistry and biology. The discipline involves the application of chemical techniques, analysis, and often small molecules produced through synthetic chemistry, to the study and manipulation of biological systems. In contrast to biochemistry, which involves the study of the chemistry of biomolecules and regulation of biochemical pathways within and between cells, chemical biology deals with chemistry applied to biology.
Diagnostic specialties: Clinical laboratory sciences are the clinical diagnostic services that apply laboratory techniques to diagnosis and management of patients. In the United States, these services are supervised by a pathologist. The personnel that work in these medical laboratory departments are technically trained staff who do not hold medical degrees, but who usually hold an undergraduate medical technology degree, who actually perform the tests, assays, and procedures needed for providing the specific services. Subspecialties include transfusion medicine, cellular pathologyclinical chemistry, hematology, clinical microbiology and clinical immunology.
Drug delivery devices are specialized tools for the delivery of a drug or therapeutic agent via a specific route of administration. Such devices are used as part of one or more medical treatments. A medical device is defined within the Food Drug & Cosmetic Act as " an instrument, apparatus, implement, machine, contrivance, implant, in vitro reagent, or other similar or related article, including a component part, or accessory which is: recognized in the official National Formulary, or the United States Pharmacopoeia, or any supplement to them, intended for use in the diagnosis of disease or other conditions, or in the cure, mitigation, treatment, or prevention of disease, in man or other animals, or intended to affect the structure or any function of the body of man or other animals, and which does not achieve any of it's primary intended purposes through chemical action within or on the body of man or other animals and which is not dependent upon being metabolized for the achievement of any of its primary intended purposes.
Targeted drug delivery, sometimes called smart drug delivery,is a method of delivering medication to a patient in a manner that increases the concentration of the medication in some parts of the body relative to others. It is a special form of drug delivery system where the medicament is selectively targeted or delivered only to its site of action or absorption and not to the non-target organs or tissues or cells.
Drug delivery refers to approaches, formulations, technologies, and systems for transporting a pharmaceutical compound in the body as needed to safely achieve its desired therapeutic effect. It may involve scientific site-targeting within the body, or it might involve facilitating systemic pharmacokinetics. Drug delivery technologies modify drug release profile, absorption, distribution and elimination for the benefit of improving product efficacy and safety, as well as patient convenience and compliance.

SUPPORTED BY

Medicinal ChemistryPharmaceutical Analytical ChemistryChemical Sciences JournalModern Chemistry & Applications
All accepted abstracts will be published in respective Conference Series LLC LTD International Journals.
Please have a glance at : http://medicinalchemistry.pharmaceuticalconferences.com/europe/